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Abstract. We recently presented a perturbation theory for the asymptotic sunival 
probability of an interacting particle system which can become trapped in an absorbing 
state. In this letter we extend the method to a simple diffusive model. Analysis of the 
resulting series shows that diffusion is an irrelevant perturbation, i.e. it does not change 
the critical behaviour. Quantitative predictions of the phase boundary are confirmed by 
results of Monte Carlo simulations. 

Non-equilibrium phase transitions have been studied intensively in recent years [1,2]. 
However, our theoretical understanding is far from complete, and a general unified 
dexription has not yet been achieved. Some progress has been achieved via field- 
theoretic renormalization group methods [3-61, but while these methods are successful 
in predicting the possible universality classes, they are not very effective in determining 
critical parameters. It is thus very important to develop new analytic methods 
which are also efficient calculational tools We recently presented a timedependent 
perturbation theory which yields precise, detailed predictions of the critical behaviour 
in an interacting particle system exhibiting a non-equilibrium second-order phase 
transition to an absorbing state [7]. In this paper we extend the method to include 
the effects of diffusion. 

The ystem considered in this work is a non-equilibrium stochastic lattice model 
or interacting particIe system [8,9] evolving according to a Markov process with local, 
intrinsically irreversible transition rules. One of the simplest such models is the contact 
process (0) [lo], which was introduced as a model for the spread of an epidemic. 
The CP is closely related to Schlogl's (first) model [ l l ]  of an autocatalytic chemical 
reaction, to directed percolation [12], and to Reggeon field theory (RFT) [13,14]. 
In the CP each site can be either vacant or occupied by a particle, so that the 
state of the system can be characterized by occupation variables { U % }  (i E Zd, with 
ui = 0, 1 corresponding to site i vacant or occupied, respectively). The evolution 
of the system is governed by simple local rules: particles are annihilated at rate 
X independent of the states of other sites, and vacancies become occupied at rate 
n / z ,  where n is the number of occupied neighbours and z is the total number 
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of neighbours. As there is no spontaneous creation of particles the vacuum is an 
absorbing state for the Markov process. In addition to this trivial state the CP has 
(in the infinite-size limit) for sufficiently small A a non-trivial ('active' ) steady state, 
with a non-zero average particle concentration p. The CP is known to exhibit a 
continuous phase transition from the active state to the absorbing state at a critical 
value A, [U]. This kind of phase transition is atso found in more complicated 
models for catalytic surface reactions [16-181. As in equilibrium the behaviour of 
the system near A, is characterized by various critical exponents, e.g. the steady 
state concentration of particles (which is the appropriate order parameter) decays 
asymptotically as p K (A ,  - A)O as A -, Ac-. Steady state series expansions 1191 in 
d = 1 yield A, N 0.3032 and p N 0.277, and timedependent series expansions I201 
yield A, N 0.303228 and p N 0.2769. This places the CP in the same universality 
class as RIT [13,14] and directed percolation 1211. 

In this work we extend the CP to include diffusion of particles. This is simply 
done by allowing the bopping of particles to empty nearest neighbour sites at rate D. 
There are many reasons for wanting to develop series expansions for diffusive models: 
surface diffusion of ad-atoms plays an important role in catalytic reactions. In the 
epidemic modeIling diffusion comes into play as won as we consider non-sedentary 
populations. In population models with 3-particle creation and/or annihilation rules, 
diffusion can lead to a re-entrant phase diagram [22-241, or change the order of the 
phase transition [U]. We do not expect diffusion to change the critical behaviour 
of the CP. A coarse-grained description of the non-diffusive CP will in fact already 
include a diffusive term, i.e. o( 02p.  Thus field-theoretic analysis of the diffusive 
CP [3] predicts R F ~  behaviour. Even without coarse graining, an effective hopping 
process is present in the CP, e.g. through the sequence 00 3 00 i 00 (0  and o 
denoting occupied and vacant sites, respectively). Our main reason for studying the 
diffusive CP is to develop time-dependent perturbative expansions in a context in 
which we know what to expect. We hope that these methods will prove useful in 
the study of more complicated models in which diffusion plays a more crucial role 
122 23,251. 

Before venturing into a description of the time-dependent perturbation theory 
we review the scaling 'behaviour of models exhibiting a continuous transition to 
an absorbing state. Following Grassberger and de la Torre [14] we consider the 
asymptotic behaviour of the model, starting at t = 0 with a single seed particle at the 
origin. According to the usual scaling hypothesis, one expects that any [unction of x, 
t, and A (A = A, - A )  depends on these variables only through x 2 / t i  and A t'/", 
times some power of x 2 ,  1, or A, where v and z are new critical exponents. For the 
probability of survival, i.e. the probability that the system has not entered into the 
vacuum state at time 1 ,  one expects 

P ( t )  0: t-'+(At'l'') (1) 

where 6 is another critical exponent, while + is a universal scaling function. In the 
supercritical region (A < A,) we see that by setting $(y) = ~ - ~ " + ( y )  we may 
rewrite (1) as 

P ( t )  K AV6$(At1 / ' ) .  (2) 

Since the system is in the supercritical region there must be a non-zero chance of 
survival, were this not the case any configuration would eventually die out, contrary 
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to our knowledge that the system has an active steady state in this region. Thus since 
P, limt-, oo P ( t )  is finite, lim,,-, $(y) is finite too, and we get 

P, 0: A"'. (3) 

However, it can be shown [14] that P, and p have the same critical exponent, leading 
to the scaling relation p = v6. 

Markov processes in many-particle systems may be conveniently described via 
an operator formalism [26-281, as demonstrated by the successful application of the 
formalism to non-equilibrium steady states of interacting particle system [19], the 
dynamics of random sequential adsorbtion [29], the asymptotic survival probability (71 
and related quantities [ZO]. In this paper we use the formalism of [7,19] in which 
only single occupancy of sites is allowed. The basis states of a given site i E Zd are 
lai) with ui = 0, 1 when site i is vacant or occupied respectively. Any configuration 
{ui} of the system can be written as a direct product I{uj})  = niEZd I.,). 

Creation and annihilation operators for site i are defined in the obvious manner 
Afluj) = (1 - ui)luj t 1) and A;lui) = ujlui - 1). 

The state of the system at time t is 

where the sum is over all configurations and p (  Ioi}, 1)  is the probability distribution 
on configuration space. The evolution of the probability distribution is governed by 
the master equation 

which has the formal solution, given that S is time-independent, lQ(t)) = eSzlQ(0)), 
where IP(0)) is the initial probability distribution. The evolution operator S for the 
diffusive cp in one dimension may be expressed as 

s = AM' + v t DD (6) 

where 

w = C(i - A ~ ) A :  

v = c(1- [I - i(Ai-lA!-l  t .4z+lAitl)] (8) 

D = c[(1- A~-,Ai)A;-lA~ + (1 - AftlAi)A, ,~A!] .  

(7) 
i 

and 

(9) 

In this decomposition W annihilates particles, V creates particles, and D corresponds 
to nearest-neighbour hopping of particles. S fulfills the conditions required for a 
probability interpretation, i.e. it preserves positivity and normalization. 
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In the following we will give a generalized description of the timedependent 
perturbation theory derived in [7] and [20]. Assume that we split up the evolution 
operator S in two parts U and R, S = U +  KR; we want to treat R perturbatively. Let 
IX,) denote the initial distribution which assigns probability 1 to the configuration 
with the origin occupied, and all other sites vacant. Consider the Laplace transform 
of I W ( t ) ) :  

I$(.)) = Lme-"lW(t))dt = ( z  - S)-'lQ(O)). (10) 

Assuming that I $ ( z ) )  can be expanded in powers of K: 

I*(%)) = 16'0) t K I a J  t K216 '2 )  t " '  

[Go) = (2 - U)-11Xo) (12) 

lan) = ( 2  - U)-lRl@n-i) 1221. (13) 

( z  - U ) - ' ( r )  = z , [ ( r )  t ( z  - U)-' 

(11) 

we find upon inserting (11) and the expression for S in (10) 

and 

Letting ( r )  denote any configuration we have 

~ ~ ~ ( r : ) ]  (14) 

where zp, = ( z  + q)- ' ,  and q is the sum of the coefficients C,, to the new 
configurahons (r ' )  generated from (r) by the application of U. A premise for the 
applicability of the method outlined above is that the operators (.-U)-' and R create 
only finitely many new configurations or that the recursive application of ( z  - U ) - ' ,  
as expressed in (14), may be truncated in a natural way. 

In this work we consider how to extend the method outlined above to diffusive 
models. As diffusion preserves the number of occupied sites it can never be included 
in U because there would be no natural way to truncate the recursive application of 
( z  - U)- ' .  In the absence of an exact solution for ( z  - V - 'D)( r ) ,  we are forced 
to treat the diffusion operator perturbatively. In this letter we have chosen to look 
at R = X [ M /  t D'Dj for a fixed numerical value for D. Thus we derive a series in 
powers of X for each value of D. From this series we then determine the critical 
value A, which then combined with a determines the corresponding value of the 
diffusion rate, D, = XcD. The major drawback of this method is that diffusion 
enters at different orders in each term of the expansion, i.e. in an expansion to order 
n the coefficient of A E  truncates at Dn-k. 

We can calculate the errinction probability p ( z ) ,  i.e. the probability of having 
entered the absorbing state. The XJ term in the expansion for p ( z )  is simply the 
coefficient of 10) in [a,). As each application of W annihilates at most one particle, 
it follows from (13) that in a calculation of p ( z )  to U(An) we can discard (j) for 
j > n in the expression for I$&. Similarly, we can ignore all configurations with 
more than n - 12 occupied sites in lak), as none of these contribute to the extinction 
probability at this order. The algebra involved in the calculation of p ( z )  rapidly 
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Table L The critical point A, and the critical exponent j3 for various values of the 
diffusion rate D. Figures in parentheses indicate the estimated errors. 

- 
D A, j3 

0.001 0.30329m o.nsm 
0.0 0.303229(1) 0.2769(1) 

- 
D 
0.75 
1 .o 
1.5 
2.0 

0.005 0.303 597(6j o.z767(3j 
0.01 0.303967(5) 0.2767(2) 
0.02 0.304709(3) oma(1 )  3.0 
0.05 0.306912(1) 0.2768(1) 4.0 

0.2 0.31760(1) 0.2768(1) 6.0 
0.35 0.327732(5) 0.2769(2) 7.0 

0.1 0.310534(5) 0.2766(4) 5.0 

05 0.337329(6) 0.2168(2) 10.0 

x, P 
0.35222(2) 0.2773(3) 
0.365 83(2\ 0.2775(3\ 
0.389 75($ o.z775(3j 

0.4692(4) O.ZEO(1) 

0.4107(1) 0.2812(3) 
0.443 52(4) 0.2806(3) 

0.490 4(9) 0.279(5) 

Table 2. Examples of the values of the poles and corresponding residues as obtained 
from the various Pad6 approximants used in estimating the aitical points ,L and the 
critical exponents j3 in table 1. 

- - - 
D = l  D = 5  D = 10 

Aaarodmant A. Q A. Q A- E 

[10,101 0.365882 0.27825 0.491886 0.2862 0.587655 0.40424 
110,111 0.365837 0.27750 0.490203 0.27820 0.556511 0.27020 
[10,121 0.365832 0.21742 0.4W222 0.27830 0.569830 0.32782 
I11,lOl 0.365834 0.27745 0.488503 0.26877 
[11,111 0.365832 0.27742 0.490222 0.27830 0.569346 0.32533 
[11,121 0.365818 0.27716 0.490 200 0.278 19 0.559089 0.27989 
I12,lOl 0365830 0.27738 0.491 690 0.28694 0.581 979 0.38582 
112.111 0.365837 0.27749 0.490393 0.27928 

becomes very complex. The steps used to generate the series are, however, simple 
enough to be codified as a computer algorithm (see [20] for further details). We have 
derived the series expansion for limz-ozp(z) to 24th order in X (it takes a little 
more than 20 minutes on an IBM3090). 

We have analysed the series for the various values of B using Pad6 approximants 
to the series for (d/dX)lnP,, thus obtaining unbiased estimates for A,, the first 
pole on the positive-X axis, and @, the residue of the Pad6 approximant at this pole. 
Each Pad6 approximant yields an estimate for A, and 8. By averaging over several 
approximants, usually all the approximants [n.m] with n,m = 10, l l  or 12, we 
obtain our final estimates. The results of this analysis are summarized in table 1. 
Our results strongly support the notion of universality, confirming that diffusion does 
not change the critical behaviour of the cp. In table 2 we have listed the estimates for 
A, and @ as obtained from various Pad6 approximants for three values of B. The A,, 
p estimates for B = 1 and 5 are stable, yielding quite accurate final estimates for A, 
and p. However for = 10 the estimates from various approximants do not agree 
very well. In this case we based our final estimate only on the [10,11] and [ll,12] 
approximants, as these yielded @-estimates close to the expected value. For higher 
values of B we could not obtain estimates for the critical parameters. Thus the 
results for large values of D are quite unstable, as reflected in the uncertainties on 
the estimates for A, and p .  This is not really surprising considering the approximate 
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way in which diffusion is treated in this approach. It should also be noted that 
for small values of D the seriG are very well behaved as all term are negative 
and increase in numerical value, whereas for larger values of consecutive terms 
eventually begin ~IJ alternate in sign. In figure 1 we show the phase diagram of the 
diffusive CP as predicted by the results reported in table 1. Here we clearly see how 
an increasing diffusion rate leads to an increasing critical annihilation rate. This is 
what one would intuitively expect as diffusion tends to break up clusters of particles, 
opening up additional sites for creation and thus making survival easier. We know 
that for D -+ CO, A, + 1, since mean field theory is correct in the limit D - CG. 

The present results seem to be wnsistent with this limit. 
As a check on the accuracy of our results, we performed time-dependent Monte 

Carlo simulations [5] to determine the critical points of the diffusive contact process 
for various diffusion rates. Our simulations follow the evolution of the process defied 
by (8 )  over many (lo4-lo') independent realizations, all starting from the same initial 
state: a single particle at the origin. For details on the simulation procedure, see 
[23] and [E]. To determine A, and some of the critical exponents, we analyse the 
S U M ' V ~  probability, Pt,  the mean particle number, nt ,  and the mean-square distance 
of particles from the origin, c:, up to some pre-determined maximum time, 1,. 
One unit of time corresponds to one attempted update per site, on average. The 
lattice is taken sufficiently large that particles never reach the boundary during a run. 
The hallmark of critical behaviour in this sort of process is asymptotic power-law 
evolution, with Pt, nt, and z: cx t -6 , t"J ,  and t " ,  respectively. Off-critical evolution is 
characterized by exponential decay (for X > A<), or saturation (for PJ, or more rapid 
growth (for n and z2), when X < A,. By analysing the local slopes of the logarithmic 
plots [14,18,23], we obtain precise exponent values. Our results for the critical point 
and exponents are summarized in table 3. The simulation results confum the accuracy 
of the series expansion predictions, and lend further support to universality, i.e. the 
exponents are in good agreement with the accepted values for directed percolation 
in 1+1 dimensions: 6 = 0.162(4), 1) = 0.308(9), and z = 1.263(8) from computer 
simulations [I41 or 6 = 0.160(3), 1) = 0.317(2), and z = 1.272(7) from high- 
temperature series expansions [13]. The Monte-Carlo simulations typically required 
10-30 CPU hours on an IBM3090, for each value of n. So series expansions are a 
much more efficient method for determining the phase diagram. 

.. .. . 

Active stole 

Absorbing state 

.01 

Figure 1. Phase diagram forthe diffusive 
CP. .The dirfusion rate D versus the 

0.29 0.36 0.43 0.50 0.57 annihilation rate X resulLs Gom series 
expansions (*) and simulations (D). 

i , ~ ~  
no1 

a 
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Table 3. Results of Monte Carlo simulations of the diffusive cantact process. Figures in 
parentheses indicate uncertainties. 
- 
D t ,  A, 6 ‘I z 
1 2000 0.3660(1) 0.157(2) 0.315(5) 1.25(2) 
5 5000 0.4912(3) 0.155(6) 0.318(4) 1.25(2) 

10 5000 0.561Ill 0.15(11 0.31[1) 1.24(1) 

In this work we have presented one method for treating diffusion in time- 
dependent perturbation expansions for the CP. Our results confirm that diffusion 
is an irrelevant perturbation of the evolution operator, and thus does not change the 
critical behaviour of the cp. 

One of us (IJ) gratefully acknowledges the support of the Danish Research Academy. 
The calculations were performed on the facilities of the University Computing Center 
of the City University of New York. 
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